We make wave power competitive

Wavepiston's non intrusive, simple, robust and low-cost solution for harvesting the energy of the oceans. Read about our groundbreaking technology.

LinkedIn logo   Connect with us and get news and updates.


This project has received funding from the European Union’s Horizon 2020 research and innovation –SME Instrument programme under grant agreement No 830036

Competitive Renewable Energy

Levelised cost of energy is estimated to be best in market

Broad, Conceptual Patent

Patent on the force cancellation principle is issued in countries around the world

Simple, Robust, Standard,

The technology is assembled using rugged components and standard offshore technologies.

“For WECs, the key to successful commercialization is the right combination of low cost, good conversion efficiency, and survivability. Wavepiston, because of its unique design is poised to offer a breakthrough in all three categories.”
- C.A. Goudey & Associates
“…Wavepiston have come up with what is in my opinion likely to be the first commercial viable wave energy harvesting device.”
Julian Smith, CENG MRINA. Naval Architect and Structural Engineer


In the ocean a chain of energy collectors is stretched between two anchored buoys.

When waves roll along the Energy collectors, plates are moved back and forth.

The moving plates pump seawater into a pipe.

The pipe leads the pressurised water to a turbine and/or a reverse osmosis system in a dry and easily accessible location for energy conversion.

Wavepiston module

The key benefits of this concept are:

The costs are massively reduced due to the light flexible structure, optimized mooring and modular design.

Simplicity and robustness is ensured by the use of standard offshore technologies.

The fully submerged system and nonpolluting materials ensure a non-intrusive technology.


Wave power challenges (Click figure for details)

Circlemap Logistics Logistics Logistics Logistics Logistics

To evaluate a wave power device it is important to understand the major challenges in harvesting wave energy.

As the figure shows wave power is much more than just converting the movement of waves.

FORCES - Wave energy is refined wind energy. When a storm has affected the ocean for days, the energy in a wave can be up to 1 MW/m wave width. These large forces will drive the cost of structure and mooring through the roof if the concept doesn't have a solving for this.

POWER CONNECTION - Power cables and connections at sea are very expensive. For Offshore wind power farms the internal power connection is 5% of the total cost and grid connection is 10%

LOGISTICS - Large structures are expensive to transport and deploy. A typical deployment vessel costs 50.000€ per day. That also goes for the days with bad weather and the vessel on standby.

MAINTENANCE & SURVIVABILITY - Seawater, cyclic forces and marine growth are a tough combination for mechanical structures. The correct choice of design and material is essential to build a low maintenance system.

How we handle the forces of the ocean

Circlemap Logistics Logistics Logistics Logistics Logistics

The Wavepiston concept captures the surge energy with vertical energy collectors (ECs) distributed on a horizontal string.

The defining and new feature of this concept over existing concepts is that many ECs are attached to

the same structure. The innovative aspect is that the mooring costs are reduced substantially, since many ECs can be moored using only two anchors.

The concept does, however, have another even more important feature: Due to the length of the string, and the oscillating nature of waves, ECs along the string will be subjected to forces in opposing directions. This is illustrated by men, all pulling a rope in different directions.

Force Cancellation

Although the situation for a single man is not affected by this situation, the net result of pulling in different directions is that comparatively small forces can anchor the rope. Like the men in the illustration the ECs are subjected to shifting wave forces in at any given time, hence resulting in a sharp decrease in the required anchor force.

This enables a slim, light and extremely cost effective structure. Advanced simulations and tests by University of Aalborg (AAU) have proven that with more than 20 ECs connected in this way, themooring needs are reduced to 1/10 in comparison with ECs moored individually, cutting the costs dramatically.

Mooring 10%

Structure 10%

Energy 100%

The idea of connecting several vertical ECs to a structure is issued as a patent in large parts of the world and marketed as “Force Cancellation”. Force cancellation does not affect the energy conversion.

How we handle storms

Circlemap Logistics Logistics Logistics Logistics Logistics

The structure with vertical ECs (referred to as string) is placed near the surface where the energy is most dense.


Since the string is neutrally buoyant it is possible to flood parts of it to bring the EC’s to greater depths and calmer waters. This will protect the system during storms and when the storm has passed, air is forced into the string hereby increasing buoyancy and returning the system to the surface again.

Storm protection is a must. Most test sites today bring the test systems to shore when storms are forecasted. This will not be necessary with the submerged ECs.

How we avoid subsea power connections

Circlemap Logistics Logistics Logistics Logistics Logistics

Electric connections and power take of systems in water are notorious for being fragile and expensive.

For this reason, hydraulic and pneumatic power lines are always chosen over electrical power lines in off-shore structures.

Drawing on the experience from the offshore industry, the mechanical movement of the ECs is converted into pressurised water by hydraulic pumps.

Wavepiston module

The Wavepiston system is designed to run at 10 bars, which ensures sufficient lubrication of the pistons and allows the use of standard polyethylene water pipes for transporting the pressurised water along the string.

The pressurised water is led to a turbine station and/or reverse osmosis system for desalination. This is placed on-shore for near-shore installations. For off-shore installations it will be placed on either a spar or a barge.

A commercial system will consist of many strings all leading the pressurised water to one turbine/reverse osmosis station.

Wavepiston module

Efficiency: turbine 80%

Efficiency: pipes/valves 94%

How we handle logistics

Circlemap Logistics Logistics Logistics Logistics Logistics

The low weight of a Wavepiston system enables the use of small vessels when deploying.

A Wavepiston system can be viewed as two parts; the main structure and the attached EC’s.

The main-structure consists of well proven standard offshore components such as steel cable, chain and anchors. These are delivered by well-respected international companies. But the (EC’s), which are the key components in a Wavepiston system, are modular. The nominal energy production of a single (full scale) EC will be in the range of 10kW, but a commercial Wavepiston system will consists of more than 100 identical EC’s. The large number of identical, simple, components enables, in the commercial situation, simple logistics and fully automated production. This strongly affects the production cost, but also speeds op optimization of the components.

Modules packed

The EC’s are designed to be fitted into 40 foot containers. The assembly process on site can be carried out using local workforce with just brief training, due to the simple mechanical structure. The simplicity also allows for maintenance with relatively little training required.

Packed container

// Will the first plates not take the energy in the waves, leaving little or nothing to the next?    No - each plate has an efficiency of 2% -13% depending on wave size. Energy passing beside or below the plates will spread and make up for the lost energy. The loss from one plate to the next is only 1% - 2%.

// Will the system produce energy when waves come from the side?   Yes and no - If waves come at an angle of 90° the system will not produce any energy. Test made with waves from different angels show an efficiency of 80% when the angle is 30°. The concept is designed to lay perpendicular to the coast thus waves directly from the side are not very big.

// Can the system handle sideways current?    Sideways current can be an issue. We aim to do the first test in an area without heavy current. We believe 1- 1.5 knots won’t be a problem as we have made calculations on that. The test will reveal if we must have an extra mooring point at the middle of the string to handle currents above 2 knots.

// The system looks very thin; will it not break during storms?   No - The best way to survive in the dynamic forces of the sea is being flexible. Static structures will experience forces that are much higher than flexible structures. The use of slack mooring gives that flexibility. The weight of the anchor chain works as a spring when forces get to high.
A steel cable is the most efficient way to make a structure between the two mooring points. In the project design the steel cable has a break load of 118 tons and is stretched between the two mooring points with a preload of 10 tons. It might look thin, but it can handle the dynamic forces of the sea a lot better than any of its “bulky” competitors.

// Will marine growth damage the system?     Biofouling has not been an issue in our tests so far. Pipe and pumps are opaque hence marine growth will only happen on external surfaces of the Wavepiston system. Our tests show that weight neutral growth is not affecting the function of the plates and we have mitigated extensive growths like mussels by covering the plates with industrial rubber.

// Will the flexibility of the steel cable and mooring not lower the efficiency of the system?     No - The structure will appear flexible in very big waves and in strong sideways current when seen from a distance, but from the perspective of the power converting modules it will appear stiff and static due to the high preload of the steel cable.

// Will pressure loss in the pipes not impact on the system efficiency?  Yes, but very little. The pressure loss is a matter of pipe diameter. With current designs the pressure loss ranges from 0,2% - 7% and peaking when the energy production is at its peak.








testing at AAU

The concept has been tested in the wave tank of the University of Aalborg. Tests in irregular waves at 4 different wave states proved the system efficiency with various numbers of collectors, various distances between collectors, various loads on the collectors and waves from different heading angles.

The bars show efficiency for 1 plate at different wave states (1-4m)

Wave state 1 13%

Wave state 2 7%

Wave state 3 4%

Wave state 4 2%


The decreasing efficiency at higher wave states is a huge advantage, as this will allow for a more cost efficient design, since forces are reduced in strong waves where the available energy exceeds the handling capacity of any reasonably dimensioned power take-off system.


Oblique wave lowers the efficiency. The circles shows efficiency of waves at 30 degrees compared to 0 degrees.

Wave state 2 - 30°


Wave state 3 - 30°


The impact of oblique waves is less than we had expected and decreases when waves are bigger.

The full test report can be found under documents.


proof of concept

A 1:9 scale model was operated successfully for 7 months at Nissum Bredning in 2013. The figure below shows the 50 m string with 8 ECs before deployment from the beach at Nissum Bredning.

The 8 mounted EC’s maintained their efficiency during the test period without maintenance, despite heavy biofouling and millions of wave cycles. Much was learned about the hydraulic cylinders, valves, and the use of seawater as a hydraulic fluid.


Furthermore lessons were learned on the handling of a full string in deployment and mooring.

Although Nissum Bredning is excellent for testing systems, deployment and influence of biofouling, the waves at Nissum Bredning are very calm. Hence, neither realistic energy production, nor testing the mechanical limits of a concept is feasible at this test site. On days with heavy wind the energy output was however close to the calculated forecasts.

On the chart below these days are marked along with the predicted curves.









Prototype at 1/2 scale

The test area is located 2Nm SouthWest of the Port of Hanstholm.

Significant wave height up to 8.2 meters and single waves up to 15 meters.

Cross current up to 3.1 knots.

The prototype project has been running since 2015 and includes several development iterations increasing the energy production and durability in each iteration.

The current version of the prototype is a 100-m string with the possibility of attaching 6 energy collectors.

In the first iteration two energy collectors were each fitted with a 4 m2 plate. In the second and third iteration a total of 4 energy collectors were each fitted with a 7 m2 plate. In our current iteration the energy collectors are each fitted with a 8.5 m2 plate.

Different storm protection systems are tested in parallel on the different energy collectors. The storm protection system reduces the plate area when forces get to big.

Data from the loads and the energy production is collected on a computer on the inner buoy and uploaded to a server every 12 hours. The data on the collected energy is analysed and compared to the predictions from the Wavepiston Energy Tool developed in collaboration with the Technical University of Denmark.








our plan

  • €/MWh
  • Desalinated water < 1 €/m3
  • Focus:
  • Production optimisation
  • Grid connection
Utility Scale
  • €/MWh (target)
  • Desalinated water < 0.25 €/m3
  • Focus:
  • Utility scale systems,
  • Fully automated Production




on calculations
by Niras
Report on tests
at AAlborg University
(scale 1:30)
Report on test
at Nissum Bredning
(scale 1:9)
Primary patent
Wavepiston brochure
Expert statements


Our partners

Vryhof Anchors logo
DTU logo
Nurmi logo
Enermed logo


Ocean Energy Europe logo
Partnerskabet logo


Our Team

Michael Henriksen profile photo

Michael Henriksen

M.Sc. Economics and Business Administration.
15 years in the financial industry managing large, international projects.
Jakob Wedel-Heinen profile photo

Jakob Wedel-Heinen

Ph.D. Maritime Engineering.
27 years of industry experience with offshore structures and renewable energy from DNV, NKT Flexibles, Vestas and Ørsted. Specialist in mechanical system simulation and engineering as well as test and verification.
Stefan Skov profile photo

Stefan Skov

Project Director
B.sc. Mechanical Engineering.
Wide and longstanding experienced earned via management and execution of operations and factory expansion projects within several businesses. Latest as PM for a new factory in Brazil for National Oilwell Varco.
Asger Kej profile photo

Asger Kej

Chairman of the board
M.Sc. Hydraulics and Environmental Engineering.
Professional board member. Over 40 years of experience on water environment and management. Former CEO of DHI group.
Torben Arnth Nielsen profile photo

Torben Arnth Nielsen

Board member
Professional board member.
Former CEO of Bank Invest, former Deputy CEO of Sydbank. Over 30 years of experience in the financial industry.
Martin von Bülow profile photo

Martin von Bülow

Chief Specialist
B.sc. Mechanical Engineering.
16 years with development of new products. Covering both early stage and production start-up. Has a background at Novo Nordisk, Coloplast and Boston Scientific. Responsible for planning and execution of the experimental systems.
Peter Grøn profile photo

Peter Grøn

Technical Manager
M.Sc. Mech. Eng. 25 years R&D, Management (Coloplast, Logstor)
Troels V. Lukassen profile photo

Troels V. Lukassen

Development Engineer
M.Sc. Mechanical Engineering.
Expert on on Solid Mechanics. Responsible for finite element analysis.
Henrik Blicher Schmidt profile photo

Henrik Blicher Schmidt

Numerical Modelling & Hydrodynamics
M.Sc. Mech. Eng., Ph.D. > 15 years offshore and product development (NOV, DTU)
Telem Avidor profile photo

Telem Avidor

Student Assistant
M.Sc. Mech. Eng. Stud.
Oscar Helmersen profile photo

Oscar Helmersen

Development Engineer
M.sc. Mechanical Engineering.
Construction and design
Kristian Glejbøl profile photo

Kristian Glejbøl

Lead Engineer
M.Sc. Mechanical Engineering, Ph.D. Material Science.
More than 10 years in the offshore business. Latest as Principal Engineer (innovation) at National Oilwell Varco. Responsible for theoretical understanding and calculation of sea-based structure.
Kronborg 1,
3000 Helsingør, Denmark

Our Sponsors

ForskEL logo
Horizon2020 logo
LAG midler
Eurostars logo
Innobooster logo

Key suppliers

ES staal logo
Wavin logo
Autodesk entrepreneur impact partner
Hempel logo
Renolit logo